Isoperimetric inequalities in simplicial complexes

نویسندگان

  • Ori Parzanchevski
  • Ron Rosenthal
  • Ran J. Tessler
چکیده

In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov’s notion of geometric overlap. Using the work of Gundert and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial–Meshulam complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isodiametric and Isoperimetric Inequalities for Complexes and Groups

It is shown that D. Cohen’s inequality bounding the isoperimetric function of a group by the double exponential of its isodiametric function is valid in the more general context of locally finite simply connected complexes. It is shown that in this context this bound is ‘best possible ’. Also studied are seconddimensional isoperimetric functions for groups and complexes. It is shown that the se...

متن کامل

Isoperimetric Inequalities for Ramanujan Complexes and Topological Expanders

Expander graphs have been intensively studied in the last four decades. In recent years a high dimensional theory of expanders has emerged, and several variants have been studied. Among them stand out coboundary expansion and topological expansion. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, fo...

متن کامل

The Fundamental Group of Random 2-complexes

In this article we find the threshold for simple connectivity of the random 2dimensional simplicial complexes Y (n, p) introduced by Linial and Meshulam [10] to be roughly p = n−1/2. One motivation for this is continuing the thread of probabilistic topology initiated by Linial and Meshulam [10], and even earlier by Erdős and Rényi [3]. (Other recent work concerning the topology of random simpli...

متن کامل

The Topology of Graph Products of Groups

Given a finite (connected) simplicial graph with groups assigned to the vertices, the graph product of the vertex groups is the free product modulo the relation that adjacent groups commute. The graph product of finitely presented infinite groups is both semistable at infinity and quasi-simply filtrated. Explicit bounds for the isoperimetric inequality and isodiametric inequality for graph prod...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2016